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Abstract: 

Deep convolutional neural networks (CNNs) are 
providing new insight into the high-dimensional feature 
space that supports object representations in the 
ventral stream. Here, we examined what specific visual 
features underlie deep CNN’s ability to predict 
occipitotemporal cortex responses to images of 
animals and objects of different sizes. To do so, we 
measured activations from a widely-used convolutional 
neural network (Krizhevsky et al., 2012) to four variants 
of the same image set: (i) original images, (ii) 
silhouetted images, (iii) phase-scrambled images, and 
(iv) texforms images (which preserve a combination of 
texture and coarse form; Long, Yu, & Konkle, 2017). We 
found that the predictive power of CNN features in the 
ventral stream was better accounted for by textural 
rather than outer contour properties. These results 
point towards textural statistics as an important 
dimension in characterizing the representational layout 
of object representations in object selective cortex, and 
underscore the importance of controlled image sets for 
examining when and why deep CNN features hold 
predictive power. 
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Introduction 

At present, deep convolutional neural network 
activations are the best predictors of object responses 
in object selective cortex (Khaligh-Razavi & 
Kriegeskorte, 2014; Güclü & van Gerven, 2015; Long, 
Yu, & Konkle, 2017; Yamins et al., 2014). However, 
we still have a relatively impoverished understanding 
of what features underlie their predictive success. 

Recently, we leveraged a new class of stimuli—
texforms, to explore the nature of the feature tuning in 
object selective cortex (see Figure 1; Long, Yu, & 
Konkle, 2017). We found that texforms and 
recognizable images yielded similar patterns of neural 
activity across occipitotemporal cortex (OTC) for both 
the animacy and object size distinctions. This result 
suggests that mid-level features underlie a substantial 

portion of neural responses to objects. However, as 
texforms preserve both coarse form and texture 
information, this work leaves open their relative 
contributions to object responses.  

Thus, in the present work, we examined the role of 
texture vs. outer contour information using a method 
developed by Bonner & Epstein (2018).  Specifically, 
here we examined the extent to which deep CNN 
activations to recognizable images might reflect 
textural vs. outer contour properties by testing whether 
deep CCN activations to texforms (Long, Yu, & 
Konkle, 2017) silhouettes, and phase-scrambled 
images also explain similar variance. 

Methods 

Stimuli Each variant of the stimulus set was 
constructed from an original set consisting of 30 big 
objects, 30 small objects, 30 big animals, and 30 small 
animals. Recognizable images and their texform 
counterparts were the same images used in Long, Yu, 
& Konkle, 2017. Silhouettes and phase scrambled 
images were generated using custom scripts in Matlab 
2017a. 

Multi-voxel patterns in OTC Neural patterns were 
taken from a pre-existing dataset (Long, Yu, & Konkle, 
2017), and consisted of activations across occipito 
temporal cortex to 24 conditions: animals/objects x 
big/small real-world size x 6 mini groups. (The images 
were grouped into 6 sets of 5 images, based on how 
well their texform counterparts were classifiable by 
animacy and size in the real-world; see Long, Yu, & 
Konkle, 2017). 

Feature extraction Feature activations were extracted 
using the neural network toolbox implemented in 
Matlab 2017a and the standard AlexNet architecture 
(Krizhevsky et al., 2012); the network was not fine-
tuned for any of the image sets. For each image and 
each convolutional filter, the summed activation map 



of the filter was computed. In order to compare these 
feature activations with the occipitotemporal 
responses, these activation maps were averaged 
across all five images in each mini group; RDMs were 
then constructed by computing the correlation distance 
between activation vectors for each set, allowing direct 
comparison with neural RDMs. 
Shared variance analyses Following Bonner & 
Epstein (2018), we combined the standard RSA 
approach with commonality analysis (Nimon & 
Oswald, 2013). This analysis estimates the portion of 
the shared variance between OTC and CNN 
activations to originals images that can be accounted 
for by CNN activations to other kinds of image sets. 
Formally, this entails conducting multiple linear 
regressions using ordinary least squares with CNN 
activations to two sets of images together (e.g., 
originals and texforms) as well as separately for each 
image set, and then using a variance partitioning 
procedure to estimate the shared variance. See 
Bonner & Epstein (2018) for further details. 

Results 
The representational dissimilarity matrix (RDM) for 

recognizable images in occipitotemporal cortex is 
shown in Figure 1. A relatively strong block-diagonal 
structure can be seen, with an overall division between 
animals and objects, and a smaller subdivision (in the 
upper left) between big and small objects. This 
structure is also visible in the multi-dimensional scaling 
plot, which shows a tripartite division between all 
animals, big inanimate objects, and small inanimate 
objects, replicating prior work (Konkle & Caramazza, 
2013).  

 
Next, we examined the RDMs computed from the 

activation in the last convolutional layer to each of the 
stimulus set variants (Figure 1). Doing so enables us 
to examine the degree to which they recapitulate the 
OTC structure in the absence of any reweighting of 
their features. While the model RDMs for texforms and 
originals appear relatively similar, the model RDMs for 
silhouettes vs. phase-scrambled images differ in 
systematic ways. For example, phase scrambled big 

 
Figure 1. (Left panel). Neural patterns in occipitotemporal cortex to images of animals and objects of different sizes, and 
a multi-dimensional scaling visualization of this representational layout. (Right panel). The top row shows example 
stimuli from the four different image sets. The middle row shows the representational dissimilarity matrix in response to 
these stimuli sets in the last convolutional layer (Conv5) of AlexNet; all RDMs are scaled. The bottom rows shows 
multidimensional scaling plots of these RDMs; dots are scaled according to how well the texforms in each group were 
classifiable by their animacy and object size. 
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objects tended to cluster together, likely owing to 
greater power at vertical/horizontal spatial frequencies. 
In contrast, silhouettes of big animals strongly 
clustered together, suggesting that big animals may be 
likely to have more similar contours than small 
animals, even though this distinction is not strongly 
evident in the neural similarity in OTC. 

Next, we examined how activations from these 
different image sets explained the predictive power of 
the original-CNN features in each layer of the model 
(see Figure 2). Texforms, which consist of both texture 
and coarse form information present in original 
images, accounted for a substantial part of the 
predictive power. Interestingly, even more primitive 
phase-scrambled images accounted for much of the 
predictive power in early layers. In contrast, silhouette 
content had relatively little predictive power in early 
layers, reaching an equivalent proportion by the later 
layers. Finally, these results should also be interpreted 
keeping in mind that the overall amount of variance 
accounted for by the original CNN features is different 
for each layer (see light gray numbers under each 
plot). Though earlier layer features have non-zero 
predictive power in occipitotemporal cortex, later 
convolutional layer features are better predictors. 

Discussion 
Overall, we found that CNN features derived from 

texture statistics explained a substantial portion of the 
predictive power in OTC of the features derived from 
recognizable images, especially in early and 
intermediate layers. In contrast, silhouettes held 
relatively less predictive power, only becoming more 
predictive than features from phase-scrambled images 
in the latest layer of the network. In general, 
silhouettes seemed capture image features that do not 
seem to be differentiate neural patterns in 
occipitotemporal cortex, despite being relatively 
recognizable.  

Thus, these results suggest a relatively strong 
contribution of textural statistics in explaining the 
predictive power of deep CNN features—here with 
respect to the large-scale distinctions by animacy and 
object size. An important future avenue for this work is 
to understand how well these results generalize when 
observers are viewing different kinds of images (e.g., 
scenes or videos) or when observers are performing 
more complex tasks. We propose that comparing the 
relative predictive power of deep CNN activations to 
various kinds of transformed image sets may help us 
understand when and why deep CNN features predict 
patterns of neural activity or visual behavior.  
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Figure 2.   The shared variance between activations to 
each image set and originals in explaining OTC patterns 
is plotted for convolutional layers 2-5 and the last two 
fully connected layers. The degree to which original 
CNN features from each layer predicted the neural 
patterns is shown in grey below each layer plot; note that 
conv 1 features are not analyzed here as they yielded an 
r-squared < .01. 
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