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ABSTRACT
By adulthood, animacy and object size jointly structure neural responses in visual cortex and
influence perceptual similarity computations. Here, we take a first step in asking about the
development of these aspects of cognitive architecture by probing whether animacy and object
size are reflected in perceptual similarity computations by the preschool years. We used visual
search performance as an index of perceptual similarity, as research with adults suggests search
is slower when distractors are perceptually similar to the target. Preschoolers found target
pictures more quickly when targets differed from distractor pictures in either animacy
(Experiment 1) or in real-world size (Experiment 2; the pictures themselves were all the same
size), versus when they do not. Taken together, these results suggest that the visual system has
abstracted perceptual features for animates vs. inanimates and big vs. small objects as classes by
the preschool years and call for further research exploring the development of these perceptual
representations and their consequences for neural organization in childhood.
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Introduction

By adulthood, our visual system rapidly and efficiently
categorizes the objects that we see, allowing us to
access a wide array of information about any given
object. For example, as soon as we recognize a pic-
tured object, we know both whether it is an animal
or an object and how big or small it is in the real
world (Grill-Spector & Kanwisher, 2005; Konkle &
Oliva, 2012a; Thorpe, Fize, & Marlot, 1996). How does
the visual system compute these broad conceptual
properties of objects (e.g., Is this alive?)? Intuitively,
objects from a particular broad category (e.g., all inan-
imate objects) can come in so many different shapes
that they may not share consistent perceptual fea-
tures, and thus these properties may be computed
solely at a semantic, non-visual level of representation.
Contrary to this intuition, our recent work has shown
that there are consistent perceptual features related
to shape and texture that underlie the dimensions of
animacy and real-world size (Long, Konkle, Cohen, &
Alvarez, 2016; Long, Störmer, & Alvarez, 2017; see
also Levin, Takarae, Miner, & Keil, 2001).

For example, in previous work we have used visual
search performance as an index of perceptual

similarity (e.g., Long et al., 2016), as search for a
target is slower when targets and distractors are per-
ceptually similar, and search for a target is faster
when targets and distractors are perceptually dissimi-
lar (Duncan & Humphreys, 1989). Under this logic, if a
given animal (e.g., a cat) is perceptually more similar to
other animals (e.g., horses, dogs, bees) than inanimate
objects (e.g., headphones, cups, staplers) then it
should be harder to find an animal among other
animals than among objects (and vice versa). In a
series of behavioural experiments in adult participants,
we found exactly this pattern of results for both the
animacy distinctions (Long et al., 2017) and real-
world object size distinctions (Long et al., 2016).
Using this visual search paradigm allowed us to link
these effects largely to perceptual differences (rather
than semantic differences), as visual search speeds
are well-known to be primarily if not exclusively
influenced by mid-level perceptual features (shape,
curvature, colour) rather than semantic features (e.g.,
for reviews, see Rosenholtz, Huang, & Ehinger, 2012;
Wolfe, 1994; Wolfe & Horowitz, 2017; but see Telling,
Kumar, Meyer, & Humphreys, 2010). We empirically
validated this perceptual locus by showing that
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these visual search advantages persist even when
adults are searching for versions of objects that pre-
serve some mid-level perceptual texture and form
information yet are unrecognizable at the basic-level
(i.e., “texforms”, see Long et al., 2016, 2017; Freeman
& Simoncelli, 2011, see Appendix, Figure 1). Thus,
the adult perceptual systems are readily sensitive to
the systematic mid-level perceptual differences that
differentiate animates versus inanimates, and big
versus small inanimate objects.

In the present paper, we investigate the develop-
ment of these visual search phenomena, asking
whether animacy and object size are reflected in per-
ceptual similarity computations in preschool-aged chil-
dren. How and when do children come to know, for
example, that animals tend to have different textural
statistics than inanimate objects (Banno & Saiki, 2015;
Long et al., 2017) and that big objects tend to be
boxier than small objects (Long et al., 2016; Long &
Konkle, 2017)? On one hand, many aspects of visual
recognition continue to mature gradually throughout
middle childhood (Dekker, Mareschal, Sereno, &
Johnson, 2011; Mash, 2006; Bova et al., 2007; for a
review see Nishimura, Scherf, & Behrmann, 2009),
and so childrenmay not have had sufficient experience
with enough animals and objects of different sizes to
have extracted the appropriate perceptual represen-
tations. On the other hand, even very young infants
can readily identify the animacy of entities in their
environment (Muentener & Carey, 2010; Saxe, Tenen-
baum, & Carey, 2005; Simion, Regolin, & Bulf, 2008)
on the basis of perceptual cues (e.g., biological
motion, the presence of eyes). Thus, we hypothesized
that the visual systems of pre-school aged children
have likely had sufficient input to discover (perhaps
via statistical learning mechanisms, e.g., Bulf,
Johnson, & Valenza, 2011; Kirkham, Slemmer, &
Johnson, 2002) the mid-level perceptual features that
predict whether something is an animal vs. an object.

With respect to real-world object size, there is
some evidence that even newborns can identify
the actual size of objects they are attending to
(Slater, Mattock, & Brown, 1990) and young infants
often try to grasp small manipulable objects well
before they can successfully do so. By age 2, children
can say when an object is “big” or “little”with respect
to other objects of the same kind (e.g., mittens), indi-
cating that they do represent the sizes of some
object kinds (Ebeling & Gelman, 1988; Gelman &

Ebeling, 1989). Thus, one might expect parallel
results for the animacy and object size dimensions
in the preschool years, as in adulthood. However,
in contrast to animacy, there is no evidence that
infants can infer the real-world size of an object
based solely on the perceptual information available
in a picture. One might also expect these perceptual
representations to develop only as children learn to
navigate on their own and to mature slowly as chil-
dren’s own body size changes dramatically. Thus, it
was an open question whether the visual systems
of pre-school age children are already sensitive to
the visual features that discriminate small manipul-
able objects from large objects relevant for
navigation.

To test these hypotheses, we adapted the visual
search experiments run with adults for use with pre-
schoolers (Long et al., 2016, 2018) by converting
them to touch-screen games. If children’s perceptual
systems are sensitive to the perceptual features that
distinguish a given high-level distinction, then we
should expect to see speeded visual search on
mixed displays, when the distractors differ from the
target in category membership (e.g., a picture of a
cup among five pictures of animals) versus on
uniform displays, when they do not (e.g., a picture
of a cup among five pictures of other inanimate
objects, see Figure 1). Across two experiments, we
thus compared how quickly children search for
targets on mixed versus uniform displays for
animacy and real-world size.

To our knowledge, this is the first set of exper-
iments to examine these kinds of category-level
search benefits in early childhood. In most visual
search experiments with preschoolers, the item chil-
dren are searching for remains constant across the
experiment or within blocks (e.g., a red teddy bear)
(e.g., Gerhardstein & Rovee-Collier, 2002; Pailian, Liber-
tus, Feigenson, & Halberda, 2016; Vales & Smith, 2015).
In contrast, here children were required to search for a
different target object on each trial in order to esti-
mate these category-level search benefits. Addition-
ally, prior work has examined how visual search is
influenced by verbal categorical labels, which can
indeed speed visual search performance in both chil-
dren and adults (Lupyan & Spivey, 2010; Vales &
Smith, 2015). In contrast, here children were simply
shown an object and asked to find a match for it
among the distractors; the category membership of
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the depicted objects was never mentioned and was
completely task-irrelevant.

Experiment 1: Animacy

Experiment 1 explored whether preschool children,
like adults, use perceptual features to distinguish
animate from inanimate objects in a task where the
distinction between these two classes is irrelevant.
We investigated whether preschool-aged children
are slower to find a target animal among distractor
animals than among distractor inanimate objects,
and, similarly, whether they are slower to find a
target inanimate object among other inanimate
object distractors than among distractor animals.

Methods

Participants
Sixteen 3- and 4-year-olds (7 males,Mage= 48.0 months,
SDage= 8.1 months) were recruited and participated.
This sample size was chosen in advance so we would
have approximately twice as many participants as
needed to observe the effect in adults (based on pilot
data from our laboratory). Parents gave informed
consent prior to participation. One additional child
started the experiment but did not finish the practice
trials. All procedures were approved by the Institutional
Review Board at Harvard University, Protocol: 23997,
“Development of visual cognitive abilities.”

Experiment set-up
The experiment was run in a web-browser (Safari) pre-
sented on a touch-screen iPad. All code was written in
Javascript using the JQuery toolbox. Reaction time,
touch position, accuracy, and experimental details were
recorded and saved after each trial to an online database.

Procedure
Children were allowed to hold the iPad, or the exper-
imenter held the iPad. If the children were leaning so
that their arm was constrained or they were touching
the iPad with both hands, the experimenter ask them
to sit up straight and re-demonstrated the proper way
to touch the iPad for this task.

Experiment design
On each trial, a target picture was displayed in the
center of the screen. Children were instructed to
touch the target picture to begin the game. After
they touched the target, it disappeared for 500ms
and then reappeared among distractors. Children
were encouraged to “touch the same one” or to
“find the match.” When children touched the target
object, one of six reward sounds were played, and
all of the objects disappeared. When children
touched a distractor object, the objects simply disap-
peared, and no reward sound was played. This trial
design is shown in Figure 1A.

The experiment had two phases. During the prac-
tice trials, the target item appeared in a display with

Figure 1. A. An example trial is shown. B. Condition structure for Experiment 1. Uniform displays occurred when target and distractor
objects were from the same category; mixed displays occurred when the target differed from the distractors in category membership.
Note that stimuli are presented on a white background here for visibility but were presented on a grey background during the exper-
iment (controlled for luminance and contrast, Willenbockel et al., 2010). Targets are outlined in black and distractors are outlined in grey
for illustration purposes.
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only two other distractors. These 3 items were ran-
domly positioned in the 6 possible locations on the
screen. The child completed practice trials until they
had achieved 10 correct practice trials. The purpose
of these trials was to familiarize the child with the
task procedure in an easy search display. Afterwards,
the experimental phase started, in which the target
appeared among five other distractors, filling the
entire display. The experimenter monitored how
engaged children were with the task, periodically
saying “good job!” to encourage on-task performance.
If the child seemed disinterested and no longer
engaged in the task, the experimenter would ask the
child if they wanted to continue playing the game.
Children continued playing until they expressed a
desire to stop or completed the entire possible set
of trials (96 trials).

The condition structure of the experiment is shown
in Figure 1B. Target items were either animals or
objects and were displayed among distractor items
that were all either animals or inanimate objects.
This yielded two kinds of displays: mixed displays, in
which the target and distractors differed in animacy;
and uniform displays, in which the target and distrac-
tors were all either animate or inanimate. Trials were
pseudo-randomized such that each of four conditions
(each combination of display type (mixed/uniform)
and target category (animate/inanimate)) appeared
once every four trials. If participants completed the
entire set of possible trials (96 trials), each item
appeared equally often as a target in both conditions.

Stimuli
Twenty-four pictures of animals and inanimate objects
(48 images total) were selected to broadly span the
categories of animate and inanimate items, excluding
human faces and bodies. Animal stimuli included
mammals, fish, insects, and birds; inanimate stimuli
included vehicles, furniture, small manipulable
objects such as cups and keys, and food items.
Stimuli were selected to be objects that were likely
familiar to most 3-year-olds.

All of these stimuli were presented in grey scale and
matched along a variety of low-level visual features:
contour variance, object extent, image area, and
aspect ratio. Contour variance was measured by com-
puting the standard deviation of the distance from the
centroid of each object (Gonzalez, Woods, & Eddins,
2009) to each point on the object’s contour, as

previous research indicates that contour variance
may influence visual search performance (Naber,
Hilger, & Einhäuser, 2012). Object extent was taken
as the ratio of the area of the object to its rectangular
bounding box (Gonzalez et al., 2009). We also
measured image area (percentage of pixels within a
square frame) and aspect ratio (max height / max
width in the picture plane). Stimuli were matched
such that animates and inanimate objects did not
differ in these features (two-sample t-tests, all p > .1).
Note that it is likely that these features we controlled
for may meaningfully covary with animacy, but by
matching them we help situate the effect beyond
these more well-established perceptual features that
are known to influence visual search times (see
Wolfe & Horowitz, 2017). Finally, the two sets of
stimuli were selected, they were equalized for
average contrast and luminance using the SHINE
toolbox (Willenbockel et al., 2010); the luminance of
the background was determined by the average lumi-
nance of non-background pixels. Example stimuli are
shown in Figure 2A; all stimuli are shown in Appendix
A and are publicly available on the GitHub repository
for this paper.

Analysis
For accuracy analyses, all test trials were analyzed. For
reaction time analyses, we excluded incorrect trials
(16.1% of all trials). We subsequently excluded reac-
tion times slower than 4 seconds to eliminate trials
where children were off task (5.1% of correct trials,
M = 1.3 trials per subject). Two subjects were excluded
from the reaction time analysis because they did not
have more than one speeded, correct trial in each of
the four conditions after outlier rejection, leaving us
with a total of 14 subjects for this analysis. On
average, these 14 children contributed 27.1 trials
(SD = 12.4 trials; Uniform trials, M = 13.5 trials, Mixed
trials, M = 13.6 trials) to the analysis. Average percent
correct and reaction times were analyzed using 2-
way repeated-measures ANOVAs with target category
(animals, inanimate objects) and display type (mixed
animacy, uniform animacy) as factors. These analyses
were confirmed using linear mixed effect models
with logged reaction times modelled as a fixed
effect of target category and display type with
random intercepts for subjects and target items
(using lmer package in R, Bates, 2005; significance in
these models were calculated using the lmerTest

438 B. LONG ET AL.



package in R, Kuznetsova, Brockhoff, & Christensen,
2017; see Supplemental Materials). These supplemen-
tal analyses ensure the robustness of these effects
after directly accounting for different numbers of
trials contributed by different participants and search
items. All raw data and analysis code are publicly avail-
able on the OSF repository for this manuscript (https://
osf.io/d5uzg/).

Results

We first asked whether children understood the task
instructions and could successfully perform the task.
We found that children performed accurately and
equally well on mixed and uniform animacy trials
(uniform animacy, M = 86.3% correct, mixed animacy,

M = 85.0% correct, F(1, 13) = .21, p = .65, h2
p = 0.02),

and also equally well whether the target image
depicted an animal or an object (animate target, M
= 83.7% correct, object target, M = 87.6% correct, F
(1,13) = 2.19, p = 0.16, h2

p = 0.14).
The main question of interest is in children’s reac-

tion times: do children find targets more quickly on
mixed animacy displays (when distractors differed
from the target in animacy) versus on uniform
animacy displays (when targets and distractors were
from the same animate category). Indeed, search
speeds were faster when the distractors differed
from the target in animacy (Figure 2A; uniform
animacy, M = 1924 ms, SD = 308 ms, mixed animacy:
M = 1598 ms, SD = 363 ms, main effect of display
type; F(1, 13) = 45.9, p < .001, h2

p = 0.78, Cohen’s dz =

Figure 2. A. Results are shown for both experiments, considering animacy in Experiment 1 (A) and size in Experiment 2 (B). The left
column shows example stimuli, which are depicted here at a higher contrast than was used in the experiment for visualization purposes.
The right columns show the data graphs, where visual search speed is plotted for uniform displays (black bars) and mixed displays (grey
bars). The data are additionally broken down by target-category. Error bars represent bootstrapped 95% confidence intervals.
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1.57).1 No other main effects or interactions reached
significance (animal targets, M = 1790 ms, object
targets, M = 1731 ms, no main effect of category; F(1,
13) = 1.08, p = .32, h2

p = 0.08, no interaction between
category and condition; F(1, 13) = 1.80 p = .20, h2

p =
0.12). These results were verified using linear mixed-
effect models, which confirmed that they generalize
both over variation in participants and stimulus
items (main effect of display type, B = .22 SE = .05, t
= 4.5, p < .001).

In sum, children found targets more quickly on
mixed animacy displays, when the distractors
differed from the target object in animacy, than on
uniform animacy displays, when the targets and dis-
tractors were either all animals or all inanimate
objects. Even though the animacy of the targets and
distractors was task-irrelevant and children were
never asked anything about the depicted items, this
factor impacted children’s ability to find depicted
objects. Given the reliance of this visual search para-
digm on mid-level perceptual features in adulthood
(Long et al., 2016, 2017) these results suggest that pre-
schoolers visually encode these depicted objects with
perceptual features that naturally distinguish animates
from inanimate objects.

Experiment 2: Real-world object size

Experiment 2 asks whether preschoolers also visually
encode depicted objects using perceptual features
that naturally distinguish big objects and small
objects. Here, we test whether preschool children,
like adults, also find depicted objects more quickly
when they are looking for a small object target (e.g.,
a picture of a cup) surrounded by big object distrac-
tors (e.g., pictures of desks, couches, and cars) and
vice versa, than when targets and distractors are all
of the same size in the real world (e.g., all pictures of
big objects or pictures of small objects). Note that
while we vary the real-world sizes of the depicted
objects, all objects are presented at the same visual
size on the screen, and the real-world size of the
depicted objects is completely task-irrelevant.

It might be expected that the effect in Experiment 2
will be smaller than that observed for the animate/
animate distinction in Experiment 1, given the evi-
dence that infants already use certain perceptual fea-
tures to pick out novel animates, construed as causal,
intentional, and communicative agents (e.g., Luo,

Kaufman, & Baillargeon, 2009; Muentener & Carey,
2010; Schlottmann & Ray, 2010; Simion et al., 2008).
In contrast, there is no such evidence that infants
use perceptual features to identify whether a novel
object depicted in a picture or on a screen is smaller
or larger than a breadbox. We therefore aimed to
include approximately three times as many partici-
pants in Experiment 2 as in Experiment 1, which
then should provide us with the power to detect
whether the effect is already present in preschoolers.

Methods

Participants
Sixty 3- and 4-year-olds (Mage= 45.5 months, SDage =
6.6 months, 18 males) were recruited at a Children’s
Museum and participated in this experiment;
another eight children started the task but did not
finish the practice trials. Using the same exclusion cri-
terion as Experiment 1 (see Data Analysis) resulted in a
final sample size of 46 children, which post-hoc sensi-
tivity analyses suggest should be enough power to
detect an effect with dz = .46 (90% power, one-tailed
t-test, Faul, Erdfelder, Lang, & Buchner, 2007). All
parents gave informed consent prior to the
experiment.

Experimental set-up
The coding environment and iPad were the same as
for Experiment 1. For Experiment 2, we also standar-
dized the way children interacted with the iPad by
having children sit at a small table across from an
experimenter who held the iPad for them.

Procedure
The trial design and procedure were the same as in
Experiment 1, except that only one reward sound
was played in order to reduce potential confusion
about the purpose of the sound. The experimental
design was the same as in Experiment 1, except that
we reduced the number of stimuli to 20 images per
category to potentially increase the number of chil-
dren that would complete the full counterbalanced
set of trials (80 trials). Target items were pictures of
small objects or big objects and were displayed
among distractor items that were all either pictures
of small objects or pictures of big objects. All stimuli
were presented at the same size on the screen. This
yielded two kinds of displays: mixed-size displays, in

440 B. LONG ET AL.



which the target and distractors differed in real-world
size; and uniform-size displays, in which the target and
distractors were all small objects or all big objects.
Trials were pseudo-randomized such that each of
four conditions (each combination of display type
(mixed/uniform) and target category (small objects/
big objects)) appeared once every four trials. Items
appeared equally often as a target in both conditions
across all trials.

Stimuli
Twenty small objects and twenty big objects that were
familiar to children (40 images total) were selected to
broadly span each category (see examples in
Figure 2B; all stimuli are in Appendix A). Small
objects were typically table-lamp sized and smaller;
big objects were chair-sized or larger. Small objects
were chosen to have a canonical orientation
(Palmer, Rosch, & Chase, 1981), and buildings were
excluded from the set of big objects. All stimuli were
equalized across luminance and contrast (SHINE
toolbox, Willenbockel et al., 2010) and matched such
that they did not differ in the same low-level visual
features controlled for in Experiment 1 (area, aspect
ratio, object extent, and contour variance; two-
sample t-tests, all p > .1).

Data analysis
On average, children completed 38.0 test trials (range:
2 to 69). As in Experiment 1, we excluded incorrect
trials (22.0% of test trials) and trials with RTs slower
than 4 seconds (10.5% of correct test trials). We
excluded 14 children who did not complete more
than one speeded, correct trial in each of the four
counterbalanced conditions; the exclusion rate here
(23%) was not markedly greater than that of Exper-
iment 1 (19%), suggesting that running this exper-
iment in a Children’s Museum (rather than in the
lab) did not introduce more noise into the results.
This left us with 46 children who contributed, on
average, 34.3 trials to analysis (SD = 16.5 trials). As in
Experiment 1, we analyzed these data using a
repeated-measures ANOVA with target category (big
objects, small objects) and display type (mixed size,
uniform size) as factors, and these effects were
confirmed using a linear mixed-effect model with
the same specifications as in Experiment 1.

Results

As in Experiment 1, children were just as accurate at
finding targets on mixed and uniform displays
(uniform size, M = 80.9%, mixed size, M = 82.6%, F
(1,45) = 0.88, p = 0.35, h2

p = 0.02). While children were
slightly more accurate at finding small objects relative
to big objects (small objects,M = 83.2%, big objects,M
= 80.2%, F(1,45) = 4.01, p = 0.05, h2

p = 0.08), there was
no interaction with the display type (uniform size vs.
mixed size; F(1,45) = 0.49, p = 0.49, h2

p = 0.01).
The main question of interest is whether children

would find the target object more quickly on mixed
size displays (when distractors differed from the
target in real-world size), than on uniform size displays
(when distractors did not differ from the target in real-
world size). They did: children’s search speeds were
faster on mixed size displays than on uniform size dis-
plays (uniform size displays: M = 1975 ms, mixed size
displays: M = 1846 ms, main effect of display type; F
(1, 45) = 9.08, p = 0.004, h2

p = 0.17, Cohens dz = .46,
Figure 2B).2 Children found target pictures that
depicted small objects more quickly than those that
depicted big objects (small objects, M = 1849 ms, big
objects, M = 1973 ms, main effect of target category;
F(1, 45) = 7.04, p = 0.01, h2

p = 0.14). However, this did
not interact with display type (F(1, 45) = 0.18, p =
0.67, h2

p = 0.004). We confirmed these results using
linear mixed effects models (main effect of display
type, B = 0.06, SE = 0.03, t = 2.38, p = 0.017).

As anticipated, we also observed that the effect size
for the object size distinction (Cohens dz = .46) was
smaller than for the animacy distinction (Cohens dz
= 1.57) in Experiment 1. This was also true when we
equalized the number of subjects in Experiment 2:
across 1000 bootstrapped samples with the same
sample size as Experiment 1 (N = 16), we found that
the average effect size was comparable to the full
sample (average Cohens dz = .49, sd = .26). However,
future work that directly compares these two dimen-
sions in a within-subjects experiment should seek to
confirm this observation.

In sum, preschoolers found depicted objects more
quickly when the distractors differed from the target
in real-world size versus when they did not. This was
true even though even though the depicted objects
were all the same size on the screen and their real-
world sizes were completely irrelevant to the task.
Thus, these results suggest that preschoolers visually
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encode these depicted objects with perceptual fea-
tures that naturally distinguish big objects from
small objects.

General discussion

To assess whether animacy and object size are already
reflected in perceptual similarity computations by the
preschool years, as they are in adulthood, we exam-
ined if these distinctions impact how quickly pre-
schoolers find depicted objects in a visual search
paradigm. In Experiment 1, preschoolers found
depicted objects more quickly when distractors
differed from the target in animacy (e.g., a picture of
a rabbit among pictures of a cup, a shoe, a desk,
etc.) vs. when distractors depicted objects of the
same animacy as the target (e.g., a picture of a
rabbit among pictures of ants, horses, fishes, etc.). In
Experiment 2, preschoolers found depicted objects
more quickly when distractors depicted objects that
differed from the target in object size (e.g., a picture
of a cup among pictures of desks, cars, fridges, etc.)
versus when distractors depicted objects of the
same size in the real-world as the target (e.g., a
picture of a cup among pictures of pens, bottles,
plates, etc.). These effects emerged even though the
category membership of the depicted objects was
totally task-irrelevant, and children were never asked
about the properties of the depicted objects.

Taken together, these results demonstrate that
when preschoolers perceive depicted objects, their
perceptual systems are sensitive to visual features
that broadly distinguish the classes of animates and
inanimates, and the classes of big objects and small
objects. Below, we discuss the possible features that
are enabling these visual search benefits, the impli-
cations of these results for theories of object recog-
nition in childhood and neural organization in the
preschool years. Finally, we discuss different develop-
mental mechanisms that could lead to the emergence
of these perceptual representations.

What features guide children’s search behaviour?

Here, we used a variant of the visual search paradigm
specifically designed to tap perceptual processing
(Levin et al., 2001; Long et al., 2016, 2017), where the
exact target item is previewed before the search
display is presented. For this kind of paradigm, the

overarching consensus is that the semantic attributes
of the stimuli do not guide visual attention (for a com-
prehensive review, see Wolfe & Horowitz, 2017).
Indeed, there is both psychophysical and electro-
physiological evidence in adults suggest that these
animacy and object size search benefits arise early in
perceptual processing (Long et al., 2017) and persist
when the objects themselves are unrecognizable at
the basic-level (Long et al., 2016; 2017). Thus, children
are likely relying predominantly on perceptual proces-
sing mechanisms during this task; this could be further
examined by conducting the visual search task using
stimuli which preserve the mid-level features but
where the depicted objects themselves are
unrecognizable.

Accepting that mid-level perceptual features drive
these search benefits in children, what are these per-
ceptual features? Delineating the visual features that
characterize category distinctions and relating them
to intuitive visual concepts is still very much an
active line of inquiry. Some work suggests that a sub-
stantial portion of the perceptual differences between
animates/inanimate as well as big/small objects seem
to be captured by a single boxy-to-curvy axis of per-
ceived curvature (Levin et al., 2001; Long & Konkle,
2017; Long, Yu, & Konkle, 2018). That is, animates
tend to be curvier than inanimates, and big objects
tend to be boxier than small objects (Long et al.,
2016; 2017; Long & Konkle, 2017). Consistent with
this idea, basic curvature differences drive visual
search performance (e.g., Wolfe, Yee, & Friedman-
Hill, 1992), and explain part of the mixed-animacy
search benefit in adults (Long et al., 2017; Levin
et al., 2001). Of course, however, curvature is not the
only perceptual feature important for these distinc-
tions. For example, for the animacy distinction both
lower-level, overall textural differences (Banno &
Saiki, 2015) as well as higher-level features such as
animal part-typicality (Levin et al., 2001) seem to con-
tribute to this mixed-category search benefit.

It is also worth noting that visual search perform-
ance can also be modulated by higher-level cognitive
factors, including object labels. For example, when
children were given an object picture cue
accompanied by its label (e.g., “bed”), children found
the target faster on subsequent trials than when no
label was present (Vales & Smith, 2015); and this
pattern of results is also evident in adults (Lupyan &
Spivey, 2010). Thus, specific variants of visual search
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paradigms can allow one to measure both visual
feature differences as well as the influence of other
higher-level mechanisms and may be useful to
explore how these two factors may jointly guide
visual attention throughout childhood.

Implications for object recognition in childhood

Whymight it be useful for the visual system to abstract
these mid-level perceptual feature representations
early in development? One possibility is that having
these more abstract representations could simply
allow the visual system to operate more efficiently.
For example, the visual system could instead classify
entities at a coarser level (e.g., “animal”, “big object”),
providing additional information without categorizing
every object at a fine-grained level (e.g., “couch”, “cat”,
“fork”, e.g, Hochstein & Ahissar, 2002). This strategy
could also be particularly useful if, for example, a
scene contained many objects that a child did not
yet have robust basic-level representations for.

A second possibility is that these perceptual rep-
resentations are useful when children are learning
new object categories, particularly when learning
them from depicted examples in textbooks or
picture books. For example, one strategy when
encountering a new category (e.g., an anteater) is to
encode all the salient perceptual features of this
object – it’s part-structure, curvature, colour, size,
and so forth. However, by initially relying on critical
perceptual features that diagnose it as an animal,
big object, or small object, learners may need to
encode fewer specific features about this object
category.

Finally, another possibility is that distinctions in the
earliest perceptual processing stages might facilitate
high-level or semantic processing, speeding access
to animacy and size properties. Related to this possi-
bility, some of our recent work has shown that the
mid-level perceptual features that distinguish objects
of different sizes can automatically feed forward to
activate real-world size information, without even
requiring basic-level recognition. For example, using
a Size-Stroop paradigm, Konkle & Oliva (2012a)
found that adults were better at making a visual size
judgment (e.g., which of two objects is bigger, on
the screen) when their relative real-world sizes were
congruent with their relative pictured sizes (e.g., a
small picture of a cup and a big picture of a car),

and this effect persisted when the object pictures
were texturized in such a way that preserved mid-
level features but rendered them unrecognizable
(Long & Konkle, 2017).

Consistent with adults, preschool-aged children
also show the Size-Stroop effect with intact pictures
of objects (Long, Moher, Carey, & Konkle, 2019); it is
an open empirical question whether preschoolers
would also show this effect with the unrecognizable
texforms. However, some aspects of these children
and adult datasets hint at similar underlying percep-
tual mechanisms in both groups: first, the magnitude
of the Size-Stroop effect did not vary according how
well preschoolers could recognize the depicted
objects, and second, adults and children showed
similar Size-Stroop effects across different pairs of
big and small objects (Long et al., 2019). Together,
these results point towards the idea that early access
to these mid-level representations may render the
process of visual recognition more efficient through-
out development.

Implications for neural organization in early
childhood

Recent research has established that while objects
have many different properties, it is their animacy
and real-world size that structure the large-scale
organization of object-selective cortex (e.g., Chao,
Martin, & Haxby, 1999; Julian, Ryan, & Epstein, 2016;
Konkle & Caramazza, 2013; Konkle & Oliva, 2012b).
That is, there are large zones of the cortical sheet
that respond more to pictures of animals (regardless
of their real-world size, e.g., fish, gorillas), big inani-
mate objects (e.g., cars, couches), and small inanimate
objects (e.g., cups, pens). Further, this topographic
organization by high-level animacy and size properties
are strongly related perceptual differences in their
mid-level features, rather than semantic differences
per se (Long et al., 2018). Finally, recent work in
adults suggests that the neural similarity of the cat-
egory representations in object-selective cortex are
actually highly correlated with the visual search
speeds between categories (Cohen, Alvarez,
Nakayama, & Konkle, 2017). Thus, the fact that pre-
schoolers show visual search advantages for both
the animacy and object size distinctions, suggests
that animacy and object size may already jointly
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structure the large-scale organization of object-selec-
tive cortex by the preschool years.

In fact, these large-scale organizations could be in
place much earlier in development. Recent work
demonstrates that infants already show differential
responses to faces and scenes in occipito-temporal
cortex by 4–6 months of age (Deen et al., 2017),
suggesting that basic mid-level feature maps could
already be established in this cortex. However, these
face-preferring regions in infants do not yet differen-
tiate faces from objects, as in the adult brain, which
points towards a substantial role for neural matu-
ration, perceptual experience, or some combination
of both (Deen et al., 2017; see also Gomez, Natu,
Jeska, Barnett, & Grill-Spector, 2018). Understanding
when and how these response selectivities emerge
and mature, their relationship to perceptual beha-
viours, and the degree to which they are shaped by
viewing, manipulating, and interacting with objects
remain rich topics for future developmental neuroima-
ging work.

One interesting possibility is that we may be able to
exploit the link between perceptual similarity among
categories as measured through visual search behav-
iour, and neural pattern similarity among categories
as measured with fMRI (e.g., Cohen et al., 2017). For
example, objects that differ in animacy and object
size drive substantially different responses across
object-selective cortex, even when they are unrecog-
nizable at the basic-level (Long et al., 2018). This
raises the interesting possibility that assessing what
distinctions are evident in visual search in kids at
different ages could be a proxy into how their visual
system is developing.

How do children acquire these perceptual feature
mappings?

What mechanisms could lead to the development of
these perceptual representations? We see three, non-
mutually exclusive possibilities. First, innate tem-
plates might exist which specifically pick out some
of the relevant features. For example, there could
be schemas that specify some set of features for
animals (e.g, biological motion; Bardi, Regolin, &
Simion, 2011; Simion et al., 2008) navigationally rel-
evant information (e.g., long, extended surfaces; Lee
& Spelke, 2010) and perhaps even for manipulable
entities (e.g., elongated, smooth objects; Almeida

et al., 2014). Second, these features could be
learned by statistical learning mechanisms that
operate over children’s visual and haptic experience
with animals and with inanimate objects of
different sizes. Third, these features could also be
derived from statistical learning mechanisms that
operate over kind-based object representations
(e.g., “dog,” “cat,” “fish”). For example, the handle
on a cup may be more salient within an object kind
representation, where it has a distinct functional
role, compared to when a cup is processed simply
as a spatiotemporally contiguous object. All three
of these mechanisms could combine to build these
perceptual representations and could do so in very
similar or rather different ways for the animacy and
object size distinctions.

These perceptual representations may also con-
tinue to be refined well beyond the preschool years.
Indeed, some work suggests that high-level object rec-
ognition abilities appear to mature gradually through-
out middle-childhood (for reviews, see Jüttner, Wakui,
Petters, & Davidoff, 2016; Nishimura et al., 2009),
raising the possibility that children’s perceptual rep-
resentations for the animacy/size distinctions may
also be refined with continued experience. For
example, children may learn which kinds of shapes
are most typical of certain animals, and this infor-
mation may be integrated into their animacy rep-
resentations. An open question is the degree to
which these kinds of refinements may be related to
the category-search benefits observed here, which
appear dependent on more basic, mid-level percep-
tual processes (Long et al., 2016; 2017). Thus, research
that examines these perceptual representations both
in the present paradigm as well as across different
kinds of tasks (e.g, animacy/size categorization)
would paint a more complete picture of how these
representations emerge and mature. Uncovering this
developmental trajectory is clearly important from a
purely developmental perspective but would also elu-
cidate why these particular distinctions—animacy and
object size—impact our perceptual systems in such
similar ways.

Notes

1. We found the same pattern of effects when we changed
the RT trimming procedure to only exclude trials with
RTs>10 s: main effect of condition, F(1,13) = 27.77, p < .001).
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2. We found the same pattern of effects when changed the
reaction time trimming analysis to only exclude trials
with RTs>10 s: main effect of condition, F(1,48) = 5.64,
p = 0.02).
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Appendix

Appendix Figure 1. Examples of texforms (left) and the original images from which they were generated. Texforms preserve the mid-
level features that distinguish animates from inanimates as well as big objects from small objects (Figure adapted with permission from
Long, Yu, & Knkle, 2018)
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